Regulation of N-formyl peptide-mediated degranulation by receptor phosphorylation.

نویسندگان

  • Charlotte M Vines
  • Mei Xue
  • Diane C Maestas
  • Daniel F Cimino
  • Eric R Prossnitz
چکیده

One of the major functions of the N-formyl peptide receptor (FPR) is to mediate leukocyte degranulation. Phosphorylation of the C-terminal domain of the FPR is required for receptor internalization and desensitization. Although arrestins mediate phosphorylation-dependent desensitization, internalization, and initiation of novel signaling cascades for a number of G protein-coupled receptors, their roles in FPR regulation and signaling remain unclear. CXCR1-mediated degranulation of RBL-2H3 cells is promoted by arrestin binding. To determine whether receptor phosphorylation or arrestin binding is required to promote FPR-mediated degranulation, we used RBL-2H3 cells stably transfected with either the wild-type FPR or a mutant form, DeltaST, which is incapable of undergoing ligand-stimulated phosphorylation. We observed that stimulation of wild-type FPR resulted in very low levels of degranulation compared with that mediated by cross-linking of the Fc(epsilon)RI receptor. Stimulation of the DeltaST mutant, however, resulted in levels of degranulation comparable to those of the Fc(epsilon)RI receptor, demonstrating that neither receptor phosphorylation nor arrestin binding was necessary to initiate FPR-mediated degranulation. Degranulation initiated by the DeltaST mutant was proportional to the level of active cell surface receptor, suggesting that either receptor internalization or desensitization may be responsible for terminating degranulation of the wild-type FPR. To distinguish between these possibilities, we used a partially phosphorylation-deficient mutant of the FPR that can undergo internalization, but not desensitization. Degranulation by this mutant FPR was indistinguishable from that of the DeltaST mutant, indicating that FPR phosphorylation or binding of arrestin but not internalization terminates the degranulation response.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Down-regulation of the chemokine receptor CCR5 by activation of chemotactic formyl peptide receptor in human monocytes.

Interactions between cell surface receptors are important regulatory elements in the complex host responses to infections. In this study, it is shown that a classic chemotactic factor, the bacterial chemotactic peptide N-formyl-methionyl-leucylphenyl-alanine (fMLF), rapidly induced a protein-kinase-C-mediated serine phosphorylation and down-regulation of the chemokine receptor CCR5, which serve...

متن کامل

Regulation of leukocyte degranulation by cGMP-dependent protein kinase and phosphoinositide 3-kinase: potential roles in phosphorylation of target membrane SNARE complex proteins in rat mast cells.

We examined the roles of cGMP-dependent protein kinase (PKG) and PI3K in degranulation induced by fMLF and by FcepsilonRI cross-linking. In rat basophilic leukemia-2H3 cells expressing formyl peptide receptor, the PKG inhibitors KT5823 and Rp-8-Br-PET-cGMP, as well as the PI3K inhibitor LY294002, reduced agonist-stimulated beta-hexosaminidase release in a dose-dependent manner. These inhibitors...

متن کامل

Interleukin-18 primes the oxidative burst of neutrophils in response to formyl-peptides: role of cytochrome b558 translocation and N-formyl peptide receptor endocytosis.

Using flow cytometry, we observed that interleukin-18 (IL-18) primed human neutrophils (PMNs) in whole blood to produce superoxide anion (O2 degrees-) in response to N-formyl peptide (fMLP) stimulation, whereas IL-18 alone had no significant effect. In contrast to tumor necrosis factor alpha (TNF-alpha), which is a cytokine known to strongly prime O2 degrees- production, IL-18 did not induce ei...

متن کامل

A novel nonpeptide ligand for formyl peptide receptor-like 1.

Formyl peptide receptor-like 1 (FPRL1) is a G protein-coupled receptor that binds natural and synthetic peptides as well as lipoxin A(4) and mediates important biological functions. To facilitate its pharmacological characterization, we screened a compound library and identified a substituted quinazolinone (Quin-C1, 4-butoxy-N-[2-(4-methoxy-phenyl)-4-oxo-1,4-dihydro-2H-quinazolin-3-yl]-benzamid...

متن کامل

Activated N-formyl peptide receptor and high-affinity IgE receptor occupy common domains for signaling and internalization.

Immune cells display multiple cell surface receptors that integrate signals for survival, proliferation, migration, and degranulation. Here, immunogold labeling is used to map the plasma membrane distributions of two separate receptors, the N-formyl peptide receptor (FPR) and the high-affinity IgE receptor (FepsilonRI). We show that the FPR forms signaling clusters in response to monovalent lig...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of immunology

دوره 169 12  شماره 

صفحات  -

تاریخ انتشار 2002